Fuente: Wikipedia

Tereftalato de polietileno

 
Commons-emblem-question book orange.svg
PET

Estructura química.

Fórmula molecular (C10H8O4)n
Densidad amorfa 1,370 g/cm3
Densidad cristalina 1,455 g/cm3
Módulo de Young (E) 2800–3100MPa
Presiónt) 55–75 MPa
Límite elástico 50–150%
notch test 3,6 kJ/m2
Glass temperature 75 °C
Punto de fusión 260 °C
Vicat B 170 °C
Conductividad térmica 0,24 W/(m·K)
Coeficiente de dilatación lineal (α) 7×10−5/K
Calor específico (c) 1,0 kJ/(kg·K)
Absorción de agua (ASTM) 0,16
Índice de refracción 1,5750

El tereftalato de polietilenopolitereftalato de etileno,polietilentereftalato o polietileno tereftalato (más conocido por sus siglas en inglés PET, polyethylene terephtalate) es un tipo de plástico muy usado en envases de bebidas y textiles. Algunas compañías manufacturan el PET y otros poliésteres bajo diferentes marcas comerciales, por ejemplo, en los Estados Unidos y el Reino Unido usan los nombres de Mylar y Melinex.

Químicamente el PET es un polímero que se obtiene mediante una reacción de policondensación entre el ácido tereftálico y eletilenglicol. Pertenece al grupo de materiales sintéticosdenominados poliésteres.

Es un polímero termoplástico lineal, con un alto grado decristalinidad. Como todos los termoplásticos puede ser procesado mediante extrusióninyeccióninyección y soplado,soplado de preforma y termoconformado. Para evitar el crecimiento excesivo de las esferulitas y lamelas de cristales, este material debe ser rápidamente enfriado, con esto se logra una mayor transparencia, la razón de su transparencia al enfriarse rápido consiste en que los cristales no alcanzan a desarrollarse completamente y su tamaño no interfiere («scattering» en inglés) con la trayectoria de la longitud de ondade la luz visible, de acuerdo con la teoría cuántica.

Propiedades

Presenta como características más relevantes:

  • Alta transparencia, aunque admite cargas de colorantes.
  • Alta resistencia al desgaste y corrosión.
  • Muy buen coeficiente de deslizamiento.
  • Buena resistencia química y térmica.
  • Muy buena barrera a CO2, aceptable barrera a O2 y humedad.
  • Compatible con otros materiales barrera que mejoran en su conjunto la calidad barrera de los envases y por lo tanto permiten su uso en mercados específicos.
  • Reciclable, aunque tiende a disminuir su viscosidad con la historia térmica.
  • Aprobado para su uso en productos que deban estar en contacto con productos alimentarios.

Las propiedades físicas del PET y su capacidad para cumplir diversas especificaciones técnicas han sido las razones por las que el material haya alcanzado un desarrollo relevante en la producción de fibras textiles y en la producción de una gran diversidad de envases, especialmente en la producción de botellasbandejasflejes y láminas.

Historia

Agua mineral envasada en PET

Fue producido por primera vez en 1941 por los científicos británicos Whinfield y Dickson, quienes lo patentaron como polímero para la fabricación de fibras. Se debe recordar que su país estaba en plena guerra y existía una apremiante necesidad de buscar sustitutos para elalgodón proveniente de Egipto.

A partir de 1946 se empezó a utilizar industrialmente como fibra y su uso textil ha proseguido hasta el presente. En 1952 se comenzó a emplear en forma de filme para envasar alimentos. Pero la aplicación que le significó su principal mercado fue en envases rígidos, a partir de 1976. Pudo abrirse camino gracias a su particular aptitud para la fabricación de botellas para bebidas poco sensibles al oxígeno como por ejemplo el agua mineral y los refrescos carbonatados. Desde principios de los años 2000 se utiliza también para el envasado de cerveza.

Aspectos del uso de tereftalato de polietileno

Algunas características:

  • Actúa como barrera para los gases, como el CO2, humedad y el O2.
  • Es transparente y cristalino, aunque admite algunos colorantes.
  • Liviano, permite que una botella pese 20 veces menos que su contenido.
  • Impermeable.
  • Levemente tóxico, recientemente se ha descubierto que las botellas que se usan para embotellar zumos de frutas ácidos liberan algo de antimonio(Sb), aunque por debajo de los límites que admite la OMS (20μg/L)[cita requerida]
  • Inerte (al contenido).
  • Resistente a esfuerzos permanentes y al desgaste, ya que presenta alta rigidez y dureza.
  • Alta resistencia química y buenas propiedades térmicas, posee una gran indeformabilidad al calor.
  • Totalmente reciclable.[cita requerida]
  • Superficie barnizable.
  • Estabilidad a la intemperie
  • Alta resistencia al plegado y baja absorción de humedad que lo hacen muy adecuado para la fabricación de fibras.
  • No es biodegradable.

Degradación

Spanish Language Wiki.svg
 

El Tereftalato de Polietileno (PET) puede ser degradado mediante diferentes métodos: proceso químico y el proceso natural. Siendo el químico, el método que puede “hacer un re- uso del material para un nuevo producto, obtención de combustibles entre otras cosas. Esto es debido a que puede ser modificada su estructura molecular”.1 El proceso natural, puede tardar una gran cantidad de tiempo debido al tiempo de vida del PET, puede llegar a degradarse en un aproximado de 50 años o más.2

Para realizar la degradación química del PET se deben tomar en cuenta primeramente las propiedades físicas y mecánicas del desecho de PET.3

Degradación mediante proceso químico [editar]

  • Degradación por medio de fluido supercrítico : Este tipo de degradación se hace mediante el uso de disolventes en condiciones supercríticas. Los disolventes más comunes para la degradación del material son “tolueno, acetona, benceno, xileno y etil-benceno, usados a temperaturas entre 583-643 K y presiones de 4 – 6 MPa”.

Mediante este proceso se obtiene estireno y otros aromáticos con tiempos de reacción muy cortos, esto es debido a las buenas transferencias de masa y calor que consiguen. La gran desventaja de esta opción de degradación se encuentra en” los costos del proceso y en que los productos obtenidos son básicamente los mismos que en craqueo térmico y catalítico.”

  • Poliestireno disuelto en corrientes petroquímicas: el polímero es disuelto en una corriente de aceite de ciclo ligero; se realiza el craqueo térmico en reactor de contacto corto a una temperatura de 723-823 K. Al realizarse este proceso se observa que existe una sinergia en el rendimiento de proceso al realizar la mezcla, pero se forma un alto contenido de aromáticos que son aportados a la degradación del poliestireno restringe el uso del producto como combustible.
  • Hidrocraqueo : se procesa aceite proveniente de pirólisis de plásticos, con el fin de obtener un producto que cumpla con las propiedades de un combustible. Este proceso se lleva a cabo en un reactor tubular continuo, usando comoCatalizador(desambiguación) /Catálisis óxido de aluminio a temperaturas de 623-723 K. Mediante este proceso se obtienen conversiones de Poliestireno hasta el 98% mediante un proceso térmico y el 88% sobre Pt/Al2O3, durante un tiempo de reacción de 240 minutos a 685 K y 6 MPa de H2. La disminución en la conversión del proceso catalítico frente al térmico se encuentra relacionada con que el Pt/Al2O3 promueve reacciones de terminación, posiblemente por hidrogenación de radicales.

4 La ventaja al hacer uso de catalizadores en el proceso radica en la selectividad, ya que al hacer uso de estos se reduce significativamente la producción de oligómeros Oligómero. Mientras que el Pt/Al2O3 realiza simultáneamente la degradación del poliestireno y la hidrogenación de productos con el objetivo de reducir el contenido de aromáticos en el producto final; pero cabe destacar que inhibe parcialmente la degradación del polímero al compararla con el proceso térmico.5

  • Hidrólisis alcalina: son triturados los desechos de PET con una solución de NAOH, la mezcla de la reacción se somete a calor hasta que alcance el punto de ebullición, al finalizar se enfría y los residuos son filtrados. El filtro alcalino obtenido es neutralizado con un diluido de ácido hidro-clorhídrico , el producto final se filtra mediante succión y es deshidratado a una temperatura de 40°C por un tiempo de 24 horas en presencia de P2Cl5.6
  • La utilización de agentes catalizadores en la hidrólisis alcalina de PET son mejores que las técnicas que no hacen uso de catalizadores.

Degradación natural del PET

•Foto degradación: la luz ultravioleta del sol provee energía de activación requerida para iniciar la incorporación de oxígeno en el polímero. Este proceso hace que el plástico se rompa y fragmente en trozos cada vez más pequeños hasta que las cadenas poliméricas alcancen un peso molecular suficientemente bajo para que pueda ser metabolizada por los microorganismos. Cabe destacar que este proceso es muy lento y puede tardar 50 años o más para que el plástico se degrade completamente.7

•Degradación de termo- oxidación: en este mecanismo de degradación el oxígeno maneja un rol fundamental para que se pueda llevar a cabo este proceso ya que depende en gran medida de la disponibilidad de oxígeno. Ya que en presencia de oxígeno, las reacciones de escisión de la cadena dominan sobre las reacciones de ampliación moleculares. Los radicales alquilo reaccionan rápidamente con el oxígeno y forma radicales peroxilo, lo que se puede hacer abstracción de hidrógeno inter o intramolecular para formar hidroperóxidos poliméricos. La Termo-oxidación y la oxidación de los productos de polietileno se llevan a cabo a un rango de temperaturas de 150-250°C, es decir, las condiciones de procesamiento, han sido objeto de varios estudios. El proceso y los mecanismos de degradación a altas temperaturas difieren de los mecanismos que tienen lugar durante envejecimiento a largo plazo a temperaturas moderadas. Una temperatura más alta significa reacciones más rápidas y mayor cantidad de radicales libres. La disponibilidad de oxígeno llegará a ser limitada debido a que la velocidad de difusión y solubilidad de oxígeno es demasiado baja. Mientras que a menor concentración de oxígeno, la probabilidad de que dos radicales alquilo vecinos sobrevivirán el tiempo suficiente para reaccionar con cada uno otro en lugar de reaccionar con el oxígeno es más alta y las reacciones de ampliación moleculares estarán conduciendo a una ampliación dominante de la distribución del peso molecular. A temperaturas de reacción más bajas, que son las reales durante la degradación ambiental, la degradación así como los tiempos de reacción son mucho más largos, el número de radicales es más pequeño y el oxígeno tiene más tiempo para difundir a los sitios de reacción.8

•Biodegradable por medio de microorganismos: se han llevado a cabo investigaciones sobre la degradación del Tereftalato de Polietileno por medio del uso de microbios y esterasa Feruloil esterasa , en las cuales se ha estudiado “el impacto de degradación en la estructura cristalina y presencia de microbios de especie Nocardia en el interior de la estructura química del tereftalato de polietileno. Se ha demostrado con un análisis de difracción de rayos x y micrografías electrónicas (SEM) que aunque la biodegradación por este medio es lenta y débil es posible que actué de manera positiva en el tereftalato de polietileno.” 9

Reciclaje del PET

Spanish Language Wiki.svg

Existen diferentes alternativas en las cuales se puede reciclar el PET desde el reciclado mecánico , químico y algunos procesos que han sido planteados en otros países para reutilizar el PET o encontrar utilidad a los envases de PET con el fin de disminuir su impacto ambiental y el volumen de estos en los tiraderos de basura.

•Reciclado mecánico: este tipo de sistema de reciclado es el más convencional para el PET, consiste en una serie de etapas a los que el material es sometido para su limpieza y procesamiento, sin involucrar un cambio químico en su estructura. Al considerar este tipo de reciclado de PET es importante conocer el origen del residuo (residuo de proceso industrial o residuo post-consumo), además es importante considerar la aplicación a la cual será destinada (fibra, lámina, botella, bidón, fleje…) y sí este tendrá algún contacto con alimento. La calidad del producto resultante ira ligada completamente con la separación previa de los materiales plásticos, ausencia de impurezas y por supuesto de su limpieza. De esta manera es de suma importancia realizar de manera minuciosa la selección de procesos y sub-procesos (separación, lavado en frío, lavado en caliente, secado, etc.) para cada caso. Dentro del reciclado mecánico existen dos tipos de proceso: siendo uno de estos el reciclado mecánico convencional y el proceso de súper limpieza; siendo el segundo complementario del primero.

Proceso del reciclado mecánico convencional

•Recogida selectiva: tiene como objetivo obtener un producto más limpio, mediante la eliminación de impurezas de otros materiales. La selección se hace de manera automática o manual, es basada en una serie de criterios: color (por ejemplo eliminar colores críticos como amarillo, café, rojo y negro, solo son permitidos los azules e incoloros), materiales plásticos (eliminación de PE, PP, PVC) son seleccionados solo las botellas de refrescos y agua, también son eliminados los materiales metálicos. En función de las propiedades de los materiales se utilizan diferentes sistemas de separación: separadores colorimétricos, de infrarrojo cercano (INR), ultravioletas. Su efectividad dependerá totalmente de las características de los elementos a separar: grado de suciedad, humedad, etc. •Triturado: consiste en reducir los envases de tamaño, usualmente este proceso es realizado en molinos de cuchillas. El tamaño final puede variar de una instalación a otra, aunque lo habitual es obtener una escama menor de 10 mm y que esta se encuentre libre de polvo. •Lavado: se suele hacer sobre el triturado, existe la opción de hacer un lavado previo sobre el envase. Para el lavado se puede usar agua, tensoactivos y/o sosa diluida a una temperatura que puede ser variable (frío, temperatura ambiente, lavado medio aprox. A 40°C o lavado en caliente a una temperatura de 70°C a 90°C. Al realizar el lavado se estarán eliminando contaminantes de tipo orgánicos entre ellos tierra, arena presentes en la superficie de la escama. Los residuos de tensoactivos usados en el lavado son eliminados mediante una serie de lavados posteriores. Pueden emplearse adicionalmente métodos de fricción, centrifugación; de esta manera aumentará el porcentaje de efectividad de lavado y la eliminación de elementos indeseables. El triturado será secado a una temperatura de 150°C a 180°C para su almacenamiento.

•Extrusión: En este proceso, la escama limpia y seca es sometida a una extrusión con temperatura y presión para la obtención de un producto final.

  • Proceso descontaminación: súper limpieza

Este proceso tiene el objetivo de que el material obtenido del proceso mecánico convencional alcance las características necesarias para su uso en contacto con alimentos. Mediante este proceso se eliminaran los contaminantes que pueden quedar adsorbidos en la superficie del plástico.10

•Descontaminación mediante tratamiento térmico: este proceso se lleva a cabo introduciendo el triturado en una extrusora a 280°C. Las impurezas insolubles e infundibles que todavía puedan permanecer en el material se quedaran en el filtro para ser eliminadas. Al mantener esta temperatura es posible que se produzca una ruptura de cadenas y en general una caída de la viscosidad por lo que es necesario, para mantener las propiedades provocar una policondensación que aumente la masa molecular en peso y en número.

Regresar